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Summary with extremely low–concordant (LC) trait values (e.g.,
see the studies by Risch and Zhang [1995] and Gu et

We are concerned here with practical issues in the appli- al. [1996]). Among these, ED sib pairs have the greatest
cation of extreme sib-pair (ESP) methods to quantitative power in the detection of linkage to QTLs, under most
traits. Two important factors—namely, the way ex- relevant genetic models, although ED sib pairs are hard
treme trait values are defined and the proportions in to find in human linkage studies.
which different types of ESPs are pooled, in the analy- The availability problem of ED sib pairs and a recent
sis—are shown to determine the power and the cost work by Elston (1992) on the cost consideration of a
effectiveness of a study design. We found that, in gen- two-stage procedure for genomewide mapping (also see
eral, combining reasonable numbers of both extremely Elston 1994) motivated our current work in design opti-
discordant and extremely concordant sib pairs that were mization of human QTL studies based on ESP methods.
available in the sample is more powerful and more cost We proposed a test (called ‘‘the EDAC test,’’ which is
effective than pursuing only a single type of ESP. We an extension of Blackwelder and Elston’s [1985] t2 test;
also found that dividing trait values with a less extreme see Gu et al. 1996) that combines ED pairs with ex-
threshold at one end or at both ends of the trait distribu- tremely concordant (EC) sib pairs that are available in
tion leads to more cost-effective designs. The notion of the same sampling pool from which the ED sib pairs are
generalized relative risk ratios (the l method, as de- selected. The EDAC design offers a compromise between
scribed in the first part of this series of two articles) is the powerfulness and the availability of ESPs, and, as
used to calculate the power and sample size for various compared with the study designs pursuing solely ED sib
choices of polychotomization of trait values and for the pairs, the EDAC test is more likely to be cost effective
combination of different types of ESPs. A balance then (Gu et al. 1996). A different type of compromise is to
can be struck among these choices, to attain an optimum relax the extremeness of ESPs; namely, the method of
design. dividing the trait values can be altered to make more

ED sib pairs available in a certain population. But, how
far can we relax the extremeness without compromisingIntroduction
on power? And how does this strategy compare with

In the detection of human quantitative-trait loci (QTLs), the EDAC design? An optimization algorithm is much
the selected sib-pair methods are known to be more needed.
powerful than random samples of sib pairs, especially To utilize linkage information from different types of
when the heritability is low (Carey and Williamson ESPs, we believe that an optimum design should answer
1991; Fulker et al. 1991; Eaves and Meyer 1994; Risch the following questions: (1) Is it necessary to combine
and Zhang 1995; Gu et al. 1996). It also has been shown ED and EC sib pairs? (2) Will such a combination en-
that the power to detect linkage to QTLs is concentrated hance the power? (3) What is the most cost-effective
in three types of extreme sib pairs (ESPs)—those with combination? At the outset, since the ED pairs are the
extremely discordant (ED) trait values, those with ex- most powerful, it seems appealing to include all the
tremely high–concordant (HC) trait values, and those available ED pairs, for genotyping and linkage analysis,

regardless of whether a solely ED-pair design or a com-
bined EDAC design is used. However, Gu et al. (1996)
showed that too few of either type of the sib pairs actu-Received June 5, 1996; accepted for publication April 17, 1997.
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few ED sib pairs, makes the answering of question (2) an additive effect of a biallelic major locus, a residual
listed above essential in the search for the optimum de- term e, and the overall phenotypic mean m: X Å m / g
sign. In the first article of this series (Gu and Rao 1997 / e. The two alleles, A1 (corresponding to higher risk)
[in this issue]), we developed the generalized relative risk and A2, at the major locus have frequencies of p and q
ratio (l) method for quantitative traits and showed that, Å 1 0 p, respectively, and g takes the values 0a, d, and
without direct inference of the underlying model, the a for trait genotypes A2A2, A1A2, and A1A1, respectively.
power and the necessary sample sizes for ESP tests may The residuals are allowed to be correlated (with correla-
be calculated via lS (for sib pairs) and lO (for parent- tion r) among relatives. The overall heritability is de-
offspring pairs), for various types of ESPs. Therefore, noted by H. The trait values are divided into a certain
we can answer all of the three questions listed above, number of intervals with specified probabilities. The
using estimates of the l’s to determine if a combined generalized l for a relative pair of type R, with trait
EDAC design is warranted. Furthermore, when the values in the hth and lth intervals, was defined (for r Å
EDAC design is indicated, we may apply the method to 0) as follows:
all possible combinations of ED and EC sib pairs, to
select the one that costs the least and/or is the most

lR(h,l) Å KR(lÉh)
K(l)

, (1)powerful (i.e., to optimize).
Concerning relaxation of the extremeness of the sib

pairs, an optimum design should address the ‘‘best’’ way where K(l) is the probability that a randomly selected
to define extreme phenotypes; namely, a pair of so-called person has a trait value in the lth interval and where
optimum thresholds should be given to define extreme KR(lÉh) is the probability that a person has a trait value
trait values. This also can be done by application of the in the lth interval given that the trait value of this per-
l method. Since a different polychotomy of the trait son’s type-R relative is in the hth interval. See our previ-
values should result in a different set of values of the ous article (Gu and Rao 1997) for a definition of
l’s, its effect on power and/or on sample size can be lR(h,l) when rú 0. Under the assumption that the resid-
estimated by use of the new values of the l’s (see equa- ual correlation r is the same for all relative pairs, we
tions [17] and [18] in Gu and Rao 1997). We then could have shown how the generalized lR(h,l) can be used to
find the optimum polychotomization by comparing all calculate the power or the necessary sample size of ESPs,
plausible ways of dividing the trait values. to detect linkage to QTLs.

In this article, we first will give a brief introduction to Two types of ESP methods are discussed in this article.
the concept of generalized l’s and will refer to our previ- One is Risch and Zhang’s ESP test, which uses only
ous article (Gu and Rao 1997) for the detailed discussion one type of ESP (discordant or concordant) and will be
and equations. We then demonstrate the effect of poly- referred to as the ‘‘ESP test’’ (e.g., ‘‘EDSP’’ refers to the
chotomization, by calculating the necessary sample sizes ED-only sib-pair test). The other is our EDAC test (Gu
for a power of 80% at the significance level (a) of .001, et al. 1996), which combines both ED and EC (HC or
using Risch and Zhang’s (1995) ED-only sib-pair (EDSP) LC or both) sib pairs. Equations for the calculation of
test, over a few combinations of upper thresholds and power and sample sizes, by use of estimated values of
lower thresholds, for extreme trait values. Among these the l’s, were presented in our previous article (Gu and
designs, a lower threshold at 30% and an upper threshold Rao 1997). The notation used here is the same as that
at 5%, that is, (30%, 5%), is shown to be consistently

used in our previous article (Gu and Rao 1997); in par-more cost effective than the other thresholds, under the
ticular, the subscript ‘‘R’’ is used to denote type-R rela-genetic models tested. To show the effect of combining
tives, with an ‘‘S’’ used for sib pairs and an ‘‘O’’ useddifferent numbers of ED and EC pairs, using the EDAC
for parent-offspring pairs.test, we fix the thresholds at (50%, 5%) and compare

the power of various combinations of ED and HC pairs. Effect of Polychotomization on the ESP Test
The optimization for the so-called best combination is In the previous article (Gu and Rao 1997), we noted,
depicted by a graph of power contours and lines repre- in an example, how the values of the l’s (hence, the
senting costs (fig. 1). A form of the optimization algo- power) depended on a trichotomization of trait values.
rithm is presented in detail, to illustrate application of We now systematically investigate how the division of
the l method. Examples are given at the end, by use of

trait values affects sample sizes of different types ofthree different sampling methods, to describe the optimi-
ESPs, as well as the cost effectiveness of a study design.zation of designs for a hypothesized QTL study, across
Only three types of ESPs, namely, ED, HC, and LC siba variety of underlying genetic models.
pairs, will be considered. The trait values will be divided

Methods and Results into three intervals, by use of two thresholds, Tl õ Th,
and the trait values of X ú Th are considered to beAs we discussed elsewhere (Gu et al. 1996; Gu and

Rao 1997), the quantitative phenotype X derives from extremely high and the values of X £ Tl to be extremely
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Figure 1 Optimization of the combination of HC and ED sib pairs, for the additive model with p Å .2, r Å .4, and H Å .3. The power
contours (solid lines) are plotted for 70%, 80%, 90%, and 95% power (at a Å .001), for various combinations of HC and ED pairs. The
dashed lines denote the cost computed as C Å max(Ned, Nhc) / ned / nhc.

low. We refer to a trichotomy with P(X £ Tl) Å x% Å .4), the sample sizes of ED sib pairs required for a
power of 80%, at a Å .001, using different pairs ofand P(X ú Th) Å y% as an (x%, y%) design. We use

‘‘h’’ and ‘‘l ’’ to denote the higher and the lower intervals, thresholds. The thresholds are placed at points so that
the first and the last interval each has a probability (P[l ]respectively.

In general, by increasing the distance between the two and P[h]) of .05, .10, .20, or .30. That is, Tl will be
varied among the 5th, 10th, 20th, or 30th percentiles,thresholds, one increases the extremeness of the resulting

ED sib pairs and, consequently, increases the power of
a given number of ED pairs, but, naturally, the increased
extremeness of the ED sib pairs makes them even harder Table 1
to find. On the other hand, a decreased distance between

Sample Sizes for the EDSP Test Having 80% Power at a Å .001,the two thresholds will generate more ED sib pairs, but
under an Additive Modelthe reduced extremeness makes the same number of ED

sib pairs less powerful. Will the increased number of SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL
available ED sib pairs make up for the power loss? Alter- (lS[h,l ] /lO[h,l ]), FOR Th Å
natively, with a fixed distance between the two thresh-

Tl 95% 90% 80% 70%olds, where is the best place to put them? For example,
is the (20%, 10%) design better than the (10%, 20%)

5% 19/4,628 27/4,621 46/5,166 74/6,178
design? What will be the best design that will give the (.40/.28) (.45/.37) (.54/.50) (.60/.58)
most throughput at a minimum cost? We will answer 10% 22/1,954 33/2,068 58/2,502 95/3,188

(.42/.32) (.48/.42) (.57/.54) (.63/,62)these questions later, under the subject of optimum de-
20% 28/847 43/968 80/1,299 138/1,797signs. First, we will show here that a choice must be

(.46/.38) (.52/.48) (.61/.59) (.68/.67)made among various divisions of trait values, because
30% 35/539 55/655 107/953 191/1,404

the effect on cost effectiveness could be dramatic. (.49/.43) (.56/.52) (.65/.64) (.71/.71)
In tables 1–3, we display, for a few additive, domi-

NOTE.—p Å .20; H Å .30; and r Å .40.nant, and recessive models (p Å .2, H Å .3, and r
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Table 2 Among these cases, the (30%, 5%) design appears to
be the most cost-effective way to divide the trait values,

Sample Sizes for the EDSP Test Having 80% Power at a Å .001,
for an EDSP design. Therefore, it seems that probandsunder a Dominant Model
with extremely high trait values and their siblings with

SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL not-so-extremely low trait values constitute a better de-
(lS[h,l ] /lO[h,l ]), FOR Th Å sign. We also did the same calculations with r Å 0 and

reached the same conclusions.
Tl 95% 90% 80% 70%

Of course, the conclusions depend on the risk-allele
frequency (p), as well as the sampling method. A much5% 36/8,706 41/6,652 53/5,651 72/5,840

(.55/.57) (.56/.59) (.59/.61) (.62/.65) larger value of p and/or a different way to select the
10% 39/3,269 45/2,712 62/2,565 88/2,874 ESPs may yield different results (see the examples in the

(.56/.58) (.57/.60) (.61/.63) (.65/.67) following sections).
20% 45/1,253 54/1,154 79/1,248 121/1,545

(.57/.60) (.59/.62) (.64/.66) (.68/.70) Effect of the Combination of ED and EC Sib Pairs,
30% 52/744 66/742 102/886 163/1,180 in the EDAC Test(.59/.61) (.61/.64) (.66/.68) (.71/.73)

As an alternative study design, Gu et al. (1996) pro-
NOTE.—p Å .20; H Å .30; and r Å .40. posed to utilize the EC sib pairs available in the same

sampling pool with the ED sib pairs and provided a
combined EDAC test. This type of study design dealsand Th will be varied among the 70th, 80th, 90th, or
with the availability problem of ED sib pairs, from a95th percentiles. For each combination, values of lS(h,l)
different perspective; namely, without compromising onand lO(h,l) follow the necessary ED-pair sample size and
the extremeness (i.e., powerfulness) of the ED pairs, onethe expected total number of sib pairs that need to be
also utilizes the linkage information in the less but stillscreened (i.e., phenotyped) to obtain the number of ED
fairly powerful EC sib pairs, which are readily available.sib pairs, which we will refer to as the ‘‘total sampling-
We showed that, when a reasonable number of EC sibpool size,’’ in this article (see equation [2], presented
pairs are combined with ED sib pairs, the EDAC designlater, and also equations [3]–[6] in Gu et al. 1996). We
is more cost effective than the EDSP design. We alsoassumed, for these calculations, that selective sampling
noted that there were so-called power dips in the EDACfrom the upper tail of the trait distribution was used;
test, which were caused by too few ED sib pairs or toothat is, probands were sampled from a subpopulation
few EC sib pairs being available (see figs. 1–4 in Gu etwith extremely high trait values, and their siblings were
al. 1996).screened, to form ED sib pairs. Although in some studies

Here, we consider the version of the EDAC test thatlarge sampling pools may have been already phenotyped
combines only HC sib pairs with ED sib pairs, so thatprior to the design of the linkage analysis, one cannot
the power of the EDAC test can be listed in a two-wayalways take that for granted.
table. In reality, the combination of LC or of both HCUnder the additive model, for a fixed Th, when Tl is
and LC sib pairs could be more cost effective, which isrelaxed from the 5th percentile to the 30th percentile,
discussed later.the ED-pair sample size is roughly doubled, and the total

sampling-pool size typically is reduced by 5–7-fold; for
a fixed Tl, when Th is relaxed from the 95th percentile Table 3
to the 70th percentile, the ED-pair sample size is more

Sample Sizes for the EDSP Test Having 80% Power at a Å .001,than quadrupled, and the total sampling-pool size also
under a Recessive Modelis increased by 1.5–2-fold. Under the dominant model,

relaxation of Tl, as described above, increases the ED- SAMPLE SIZE FOR ED PAIRS/TOTAL SAMPLING POOL

pair sample size by 1.5–2-fold and reduces the total (lS[h,l ] /lO[h,l ]), FOR Th Å
sampling-pool size by 5–10-fold; relaxation of Th in-

Tl 95% 90% 80% 70%creases the ED-pair sample size by 2–3-fold and may
reduce the total sampling-pool size when P(l) is small

5% 52/2,882 79/5,520 233/17,950 670/46,524
(.5 and .10) or may increase it when P(l) is large (.20 (.67/.84) (.71/.86) (.81/.90) (.88/.94)
and .30). As for the recessive model, the total sampling- 10% 54/1,375 94/2,957 333/10,765 1,017/29,169

(.68/.84) (.73/.87) (.83/.92) (.90/.95)pool size is reduced by 3–6-fold and the ED-pair sample
20% 58/668 123/1,663 524/6,820 1,677/19,234size is increased from just slightly to Ç3-fold, when Tl

(.69/.84 (.76/.88) (.86/.93) (.92/.96)is relaxed as described above; relaxation of Th, on the
30% 62/444 154/1,230 728/5,418 2,370/15,606

other hand, increases the total sampling-pool size by (.69/.85) (.77/.89) (.88/.94) (.93/.96)
15–35-fold while increasing the ED-pair sample size by

NOTE.—p Å .20; H Å .30; and r Å .40.12–40 fold.
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Table 4

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under an Additive Model

POWER, FOR ned Åb

nhc
a 7 (.03) 14 (.09) 21 (.20) 28 (.34) 35 (.47) 42 (.60) 49 (.71) 56 (.80) 63 (.86)

13 (.03) .09 .19 .26 .31 .34 .37 .39 .40 .41
26 (.10) .13 .32 .46 .56 .63 .68 .72 .74 .77
39 (.20) .15 .38 .57 .69 .77 .82 .86 .89 .91
52 (.32) .16 .42 .63 .76 .84 .89 .92 .94 .96
65 (.44) .16 .45 .67 .81 .89 .93 .95 .97 .98
78 (.56) .17 .47 .70 .84 .91 .95 .97 .98 .99
91 (.66) .17 .49 .72 .86 .93 .96 .98 .99 .99
104 (.75) .17 .50 .74 .87 .94 .97 .98 .99 1.00
117 (.82) .18 .51 .75 .88 .95 .98 .99 .99 1.00

NOTE.—p Å .20; H Å.30; r Å .40; and (Th, Tl ) Å (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.

For the same set of models for which we analyzed, in than that for use of the ED pairs only (20%) or the HC
pairs only (20%), and use of the combination of 21 EDthe previous section, the effects of dividing the trait val-

ues, we now fix the (50%, 5%) design and calculate the pairs and 65 HC pairs has 67% power, which is a big
improvement over that for use of the ED pairs onlynumbers of ED and HC sib pairs, Ned and Nhc, respec-

tively, that are necessary for a nominal power of 80%, (20%) or the HC pairs only (44%). Interested readers
may refer to the study by Gu et al. (1996) for the resultswhen the ESP test is based solely on ED or HC sib pairs.

If the number of available ED pairs in a sample is larger for a broader range of models. Note that the combina-
tions near the diagonal in the tables always have en-than Ned or if that of HC pairs is larger than Nhc, then

a single-type ESP test will have the necessary power, hanced power, over the ESP test based on either type of
sib pair alone. Also, when approximately one-half ofand the combination of the sib pairs for EDAC is not

necessary (although it could yield more power). So, we Ned and one-half of Nhc are combined, the power of the
combined EDAC will surpass the nominal 80% power,will focus on the EDAC test that combines the number

of ED pairs that is less than Ned and the number of HC and the gain in power, over the ESP test, is nearly max-
imized (also see fig. 1 and the examples described below,pairs that is less than Nhc. For the purpose of demonstra-

tion, we increase the sample sizes of ED and HC sib for optimum combinations).
pairs in nine equal increments, until they just surpass

Effect of Polychotomization, on the EDAC TestNed and Nhc, respectively. The power of the EDAC test
that combines these numbers of ED and HC pairs is We also calculated, for the same set of models with

the same set of trait-value divisions, the sample sizes ofdisplayed in tables 4–6.
In tables 4–6, we also display, in parentheses after ED and EC sib pairs, for the EDAC design, when the

ED and HC pairs are combined according to their ex-the various numbers of ED or HC sib pairs, the power
of the ESP test based on the ED pairs only or on the pected ratio of availability in a selective sample. The

ratio can be estimated via the use of recurrence risksHC pairs only, so that one can compare the power of
these tests with the power of the combined EDAC test, derived from reliable population studies (see equation

[3] below).to see which combinations enhance the power. We see
that use of a combination of sib pairs will result in a The patterns of effects are similar to those of the EDSP

test (tables 1–3). However, the sampling-pool size forhigher power than use of either type of sib pairs alone,
as long as enough numbers of both types of pairs are the EDAC design is reduced further for the same trait-

value divisions, whereas the combined sample size (EDcombined. For example, with the additive trait displayed
(table 4), if the number of ED sib pairs is õ21, pooling plus HC pairs) is not always reduced. We present the

results only for the additive trait, in table 7. We see thatof ED and HC sib pairs will never yield a power ú75%,
regardless of the number of HC pairs (i.e., even when the (30%, 5%) EDAC design will reduce the screening

(i.e., phenotyping) burden (and hence the cost), as welluse of the HC pairs alone could have a power ú80%).
On the other hand, use of a combination of 21 ED pairs as the combined-sample size (for genotyping) by Ç4-

fold, as compared with the (10%, 10%) EDAC design.and 39 HC pairs has 57% power, which is much better
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Table 5

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under a Dominant Model

POWER, FOR ned Åb

nhc
a 9 (.02) 18 (.08) 27 (.17) 36 (.28) 45 (.41) 54 (.53) 63 (.65) 72 (.74) 81 (.81)

25 (.03) .08 .18 .26 .33 .37 .41 .44 .46 .48
50 (.10) .10 .27 .42 .54 .62 .68 .73 .77 .79
75 (.20) .10 .31 .50 .64 .74 .81 .85 .89 .91
100 (.32) .11 .34 .55 .70 .80 .87 .91 .94 .95
125 (.44) .11 .35 .58 .74 .84 .90 .94 .96 .97
150 (.55) .11 .37 .60 .76 .86 .92 .95 .97 .98
175 (.66) .12 .37 .62 .78 .88 .93 .96 .98 .99
200 (.74) .12 .38 .63 .80 .89 .94 .97 .98 .99
225 (.81) .12 .39 .64 .81 .90 .95 .98 .99 .99

NOTE.—p Å .20; H Å .30; r Å .40; and (Th, Tl ) Å (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.

Also, compared with the (30%, 5%) EDSP design (table atic algorithm is needed, to search for the optimum de-
sign.1), this hybrid design reduces the total sampling-pool

Of course, without any knowledge about the diseasesize by 253 (almost 2-fold), while it increases the sample
etiology, optimization of study designs would not besize for genotyping by 47. Therefore, both the relaxation
possible. Fortunately, as we demonstrated in the firstof extremeness and the utilization of EC sib pairs con-
article of this series (Gu and Rao 1997), if estimates oftribute to a more efficient and more cost-effective design.
various recurrence risks (and, hence, estimates of the

Optimization of Study Designs, Using the l Method l’s) are available, one may calculate statistical power
In the preceding discussion, we observed the follow- and necessary sample sizes, as well as the cost of differ-

ing: (1) An EDAC design is likely to be more cost effec- ent designs, without knowing the parameters of the un-
tive than a single-type ESP design, when enough num- derlying genetic model. Equations for sample size and
bers of both ED and EC sib pairs are available in the power were given in the previous article (Gu and Rao
sample, and some combinations are better than others. 1997), and the total sampling-pool size may be calcu-
(2) For either design, some trichotomies of trait values lated via the estimated recurrence risk KS(h,l) as follows

(also see equations [3]–[6] in Gu et al. 1996):are more cost effective than others. Therefore, a system-

Table 6

Power of Various Combinations of the Numbers of ED and HC Sib Pairs, by Use of the EDAC Test, under a Recessive Model

POWER, FOR ned Åb

nhc
a 9 (.01) 18 (.06) 27 (.15) 36 (.28) 45 (.43) 54 (.57) 63 (.70) 72 (.80) 81 (.87)

3 (.02) .07 .09 .10 .11 .11 .11 .11 .11 .12
6 (.08) .17 .26 .31 .33 .35 .36 .37 .38 .38
9 (.18) .25 .43 .51 .56 .58 .61 .62 .63 .64
12 (.30) .32 .56 .66 .72 .75 .78 .79 .80 .81
15 (.43) .38 .65 .77 .83 .86 .88 .89 .90 .91
18 (.55) .42 .73 .84 .89 .92 .94 .95 .95 .96
21 (.66) .46 .78 .89 .93 .95 .97 .97 .98 .98
24 (.76) .49 .82 .92 .96 .97 .98 .99 .99 .99
27 (.83) .51 .85 .94 .97 .98 .99 .99 1.00 1.00

NOTE.—p Å .20; H Å .30; r Å .40; and (Th, Tl ) Å (50%, 5%).
a The nos. in parentheses indicate the power when only HC sib pairs are used.
b The nos. in parentheses indicate the power when only ED sib pairs are used.
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Table 7

Sample Sizes of Ed and HC Sib Pairs for the EDAC Test Having 80% Power at a Å .001,
under an Additive Model

SAMPLE SIZE FOR ED PAIRS/HC PAIRS/TOTAL SAMPLING POOL

(lS [h,h ] /lO[h,h ]), FOR Th Åa

Tl 95% 90% 80% 70%

5% 9/520/2,328 15/746/2,482 27/1,239/3,023 46/1,918/3,868
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

10% 11/217/971 17/329/1,094 33/589/1,437 58/969/1,955
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

20% 14/96/429 23/155/517 46/305/745 84/543/1,094
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

30% 18/64/286 30/108/361 62/227/555 117/426/860
(1.89/1.81) (1.59/1.56) (1.33/1.33) (1.21/1.21)

NOTE.—p Å .20; H Å .30; and r Å .40.
a The values for the l’s refer to the HC pairs.

P[(h,l)S] Å KS(h,l)P(h) (2) pairs, and n2 HC pairs; for example, a design using n1

ED pairs only is denoted by (0, n1, 0).
and

Algorithm for Optimization
The algorithm to be used with pre-existing phenotypic

N Å P(h)
Ned

P[(h,l)S]
, (3) data is as follows.

1. For each plausible division of trait values (or, at least
where P[(h,l)S] is the probability of a sib pair having for the more promising divisions), get estimated val-
trait outcome (h,l), P(h) is the probability of a randomly ues of the generalized l’s for sib pairs and for parent-
selected person having the trait value in the hth interval, offspring pairs, from the existing data set or from
and Ned is the ED sample size required for the preset previous population studies.
power. 2. Then, for each division, calculate the necessary sam-

Applying this theory, we now can develop an opti- ple sizes, S0, S1, and S2, of LC, ED, and HC sib pairs,
mum design by answering the following questions: (1) respectively, to achieve the desired power 1 0 b, if
Is the combination of different types of sib pairs going the ESP-test design is to be used for analysis.
to increase power? (2) Is relaxation of extremeness 3. Let N0, N1, and N2 be the numbers of available LC,
going to improve cost effectiveness? (3) What is the ED, and HC sib pairs in the sample. If Ni § Si for
best combination of ED and EC sib pairs, and what is any i, calculate the cost for use of only that type of
the best way to divide the trait values? We will describe sib pairs in the analysis. Retain the number with the
below an algorithm that answers these questions in least cost.
steps and that eventually will lead us to an optimum 4. For each combination (n0, n1, n2), when ni £ Ni,
study design. calculate the power of the combined EDAC test.

We will deal with only those instances in which phe- 5. If the power is less than desired, ignore that combina-
notypic data already have been collected for a certain tion; if the power is not less than desired, compare
number of families or sib pairs and for which the task its cost, (n0 / n1 / n2) CG, where CG is the genotyping
is to determine the numbers of the different types of cost of one sib pair, with that of the previously re-
ESPs to be used for genotyping and linkage analysis. We tained combination. If it costs less, retain this combi-
may need to minimize the cost, to achieve a desired nation; otherwise, reject it.
power 1 0 b, at some a, or to achieve maximum power 6. Consider the next combination.
at a given cost. When a new study is designed in the 7. After all possible combinations have been exhausted,
absence of any phenotypic data, attention must be paid the retained combination attains the desired power
to sampling and to balancing of the costs of phenotyping with the least cost.
and genotyping. In the algorithm presented below, (n0,
n1, n2) denotes a combination with n0 LC pairs, n1 ED When designing a new study in the absence of pheno-
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typic data, the cost function discussed in step (5) above 95% power are plotted as solid curves. Cost lines (C
Å max[Ned, Nhc] / ned / nhc) are plotted as various typestakes the form NCP / (n0 / n1 / n2) CG, where CP

is the unit phenotyping cost and where N is the total of dashed lines. When the cost is fixed, maximization
of power is equivalent to the search for the power con-sampling-pool size. Then, minimization of the cost is

equivalent to minimization of N / (n0 / n1 / n2) CG/ tour that intersects the cost line at just one point. Simi-
larly, when the power is preset, minimization of cost isCP. Thus, the genotyping-to-phenotyping cost ratio is

needed in the algorithm, and the sampling method will equivalent to the search for the cost line that intersects
the power contour at just one point. The value C repre-determine the value of N. In reality, the algorithm

should be tailored to suit the actual situation. For exam- sented by the cost line will give the minimum cost, and
the point of intersection will be the optimum combina-ple, if partial phenotypic data that yield less power than

desired already have been collected, an optimum design tion (e.g., the combination of 33 ED and 46 HC pairs
is optimum for the preset power of 80%).then would need to maximize the power of the already-

collected data and to minimize the cost of the collection We summarize the optimization results in tables 8–
10, under the categories of additive, dominant, and re-of additional data.
cessive models and for various values of p. We want to

Example clarify here that, although the results are presented this
way, the optimization process does not require priorWe now illustrate the application of the above algo-

rithm to a hypothetical study of a moderately heritable knowledge of the underlying models per se. All it needs
are sets of estimated values of the l’s corresponding totrait, in which genotyping and phenotypic screening cost

the same per subject. Assuming the underlying trait to the sets of thresholds over which one wishes to optimize
the study design.be additive, dominant, or recessive, with various values

of p, we fix H Å .3. For each of the models, we require As a general pattern, we see that, in far more cases,
the EDAC design combining different types of ESPsthat the optimum design retain a power of 80% at a

Å .001. The following three sampling methods were works more efficiently than those designs utilizing only
one type of ESP. This is true more so when the random-considered: (1) selecting probands from the high-ex-

treme tail of the trait distribution and screening their sampling scheme is used for selection of the ESPs, for
which all the optimum designs correspond to the EDACsiblings, to form HC and ED pairs; (2) selecting pro-

bands from both extreme tails and the screening their design. Only when selective sampling from the high end
of the distribution is used does the EDSP design becomesiblings, to form HC, LC, and ED pairs; and (3) ran-

domly selecting sib pairs, to screen for ESPs. Methods the choice for the optimum design, for dominant traits
and for recessive traits with very high values of p.(1) and (2) are referred to as ‘‘selective sampling,’’ and

method (3) is referred to as ‘‘random sampling,’’ in this A smaller allele frequency, as well as the presence of
positive residual correlation among sibs, requires opti-article.

The set of thresholds that trichotomize the trait values mum designs to choose more liberal thresholds. For ran-
dom sampling, it results in less-restricted thresholds onfor the optimum design is searched for over a grid of

possible percentiles spaced 5% apart. In theory, one can both ends, whereas, for selective sampling (either for one
tail or for both tails), it results in a restricted threshold atsearch for the thresholds continuously over all possible

values, but that would require too many estimates of one end and a somewhat liberal threshold at the other
end. Most often, r ú 0 reduces the cost of the optimumthe corresponding l’s, as well as unrealistic computer

time. For each selected set of thresholds, the best combi- design, because EC pairs are more readily available and
ED pairs become more powerful.nation of the various types of ESPs required for genotyp-

ing and for phenotypic screening is derived by compari- For additive traits, when p õ .5, EDAC designs com-
bining ED and HC pairs, together with liberal lowerson of the six possible ESP designs (depending on the

sampling scheme), namely, the ED, the HC, the LC, the thresholds, are optimum. As the frequency increases and
becomes ú.5, if ESPs are sampled randomly or selectedED / HC, the ED / LC, and the ED / HC / LC

designs. The cost of a design is measured by the sum of from both ends of the distribution, the results for p
correspond to that of 1 0 p, with the positions of thethe number of unselected sib pairs needed for screening

and the number of ESPs to be genotyped. The optimum HC and LC pairs switched; so, these results are not
displayed in tables 8 and 9. For those cases, the optimumdesign will minimize the cost for a given model.

A graphic illustration for the optimization of the com- design combines LC pairs with ED pairs by use of less-
restrictive upper thresholds. If we select ESPs from onlybination of HC and ED pairs (by use of selective sam-

pling from the upper-extreme tail), for the thresholds the upper tail of the trait distribution, the optimum de-
sign turns out to be the EDSP design. The lower thresh-(50%, 5%), under an additive model with p Å .2, rÅ .4,

and H Å .3, is given in figure 1. Contours consisting of old depends on the magnitude of r.
For dominant traits, the patterns of extreme thresh-ED / HC combinations with 70%, 80%, 90%, and
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Table 8

Optimization of Study Designs under Various Additive and Dominant Models (H Å .30), with the Assumptions of Random Sampling and
Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR r Å 0 STUDY DESIGN, FOR r Å .40

Thresholdsa Thresholdsa

p (%, %) (n0, n1, n2)b Costc (%, %) (n0, n1, n2)b Costc

Additive Model

.05 (50, 10) (0, 76, 41) 1,468 (60, 10) (0, 67, 41) 1,292

.10 (45, 15) (0, 128, 77) 1,831 (45, 15) (0, 80, 79) 1,567

.20 (30, 20) (0, 129, 133) 2,198 (35, 20) (0, 92, 131) 1,837

.30 (30, 20) (0, 136, 141) 2,364 (35, 20) (0, 96, 139) 1,952

.40 (30, 25) (126, 169, 151) 2,369 (35, 20) (180, 92, 127) 2,020

.50 (25, 25) (169, 121, 169) 2,248 (25, 25) (193, 78, 97) 2,098

Dominant Model

.05 (55, 10) (0,79,38) 1,356 (60, 10) (0, 61, 39) 1,205

.10 (45, 15) (0, 118, 70) 1,680 (50, 15) (0, 88, 71) 1,430

.20 (30, 25) (0, 157, 169) 2,095 (35, 25) (0, 117, 162) 1,749

.30 (30, 30) (199, 176, 105) 2,049 (30, 25) (221, 92, 94) 1,923

.40 (25, 30) (169, 163, 0) 2,121 (25, 40) (163, 147, 0) 1,781

.50 (20, 40) (109, 165, 0) 1,900 (20, 45) (109, 127, 0) 1,635

.60 (15, 50) (64, 139, 0) 1,637 (15, 50) (67, 96, 0) 1,435

.70 (10, 60) (32, 96, 0) 1,339 (10, 55) (35, 63, 0) 1,243

.80 (5, 60) (14, 43, 0) 1,158 (5, 55) (15, 32, 0) 1,136

.90 (5, 55) (61, 321, 0) 8,888 (5, 50) (101, 205, 0) 10,082

.950 (5, 55) (649, 4387, 0) 119,566 (5, 40) (1409, 1909, 0) 150,589

NOTE.—The results for additive models with p ú .5 and those for recessive models are not displayed, since they can be derived from the
corresponding results for additive or dominant models (see the Example section in Methods and Results).

a (x%, y%) defines the trait values below the xth percentile as extremely low and those above the (100 0 y)th percentile as extremely high.
b Also indicates which type of ESP test (EDSP or EDAC) was used for the optimum design, since n0 denotes the no. of LC pairs, n1 the no.

of ED pairs, and n2 the no. of HC pairs used.
c Measured by the sum of the no. of sib pairs to be screened and the no. to be genotyped.

olds in optimum designs are similar to those of the addi- in this light, the unit cost per phenotype may not be
grossly different from the unit cost of genotyping. There-tive case, except that the optimum designs switch from

HC / ED to LC / ED earlier than those of the additive fore, the results presented in this example may have a
greater degree of validity than may appear at first.case, as p increases. Again, when selecting from the up-

per tail only, EDSP designs become the choice for the
optimum design, as p increases. Discussion

For recessive traits, if ESPs are sampled randomly or
selected from both tails of the distribution, the results When the method of ESPs is applied to quantitative

traits, the setting of the thresholds to define extremefor p are symmetric to those of 1 0 p, for the dominant
trait with HC and LC switched. So, we skip displaying trait values and the choice of the right combination of

ED and EC sib pairs to pool poses an important practicalthe results for these cases. When ESPs are selected only
from the upper tail of the distribution, HC designs be- challenge. We have demonstrated here how these two

factors affect the cost effectiveness of an ESP-study de-come favorable when p is small and when r Å 0.
Finally, it should be noted that this example was lim- sign and how an optimum choice can be achieved via

use of the l method. The overwhelming power of andited to the case when the unit costs are the same for
genotyping and for phenotyping. In reality, the pheno- the relative lack of a sufficient number of ESPs generate

a dilemma for any investigator searching for the besttyping costs can be much larger. However, phenotypic
studies often collect information on a number of pheno- study design. The following three types of compromises

were suggested here: (1) relax the criterion of ex-types, and it may be desirable to perform linkage analy-
sis for several (if not all) of the phenotypes. Looked at tremeness so that more ED sib pairs will be available in
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Table 9

Optimization of Study Designs under Various Additive and Dominant Models (H Å .30), with the Assumptions of Selective Sampling,
from both the Upper and Lower Tails, and Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR r Å 0.0 STUDY DESIGN, FOR r Å 0.40

Thresholds Thresholds
p (%, %) (n0, n1, n2) Cost (%, %) (n0, n1, n2) Cost

Additive Model

.05 (55, 5) (0, 38, 25) 183 (60, 5) (0, 23, 28) 148

.10 (40, 5) (0, 47, 28) 266 (60, 5) (0, 32, 35) 210

.20 (25, 5) (0, 44, 34) 371 (50, 5) (0, 33, 46) 285

.30 (20, 5) (0, 48, 40) 489 (50, 5) (0, 42, 55) 355

.40 (20, 5) (0, 62, 46) 627 (45, 5) (0, 44, 65) 434

.50 (5, 15) (54, 61, 0) 795 (5, 45) (79, 54, 0) 525

Dominant Model

.05 (55, 5) (0, 37, 24) 178 (70, 5) (0, 28, 26) 144

.10 (35, 5) (0, 55, 31) 338 (55, 5) (0, 34, 39) 242

.20 (35, 5) (0, 130, 0) 669 (50, 5) (0, 58, 67) 458

.30 (5, 25) (0, 132, 0) 887 (5, 45) (97, 74, 0) 671

.40 (10, 25) (77, 92, 0) 688 (5, 50) (67, 61, 0) 466

.50 (10, 35) (57, 86, 0) 479 (5, 55) (46, 49, 0) 320

.60 (5, 40) (25, 57, 0) 287 (5, 60) (31, 38, 0) 212

.70 (5, 55) (18, 39, 0) 160 (5, 65) (21, 28, 0) 136

.80 (5, 5) (21, 0, 0) 105 (5, 60) (19, 23, 0) 111

.90 (5, 5) (40, 0, 0) 425 (5, 55) (130, 155, 0) 915

.950 (5, 5) (241, 0, 0) 4090 (5, 55) (1,805, 2,185, 0) 13,403

NOTE.—See footnotes to table 8.

the sampling pool; (2) combine EC sib pairs with ED tion should be collected for analysis when p is close to
.5. When ESPs are sampled from the tails of the distribu-sib pairs, to enhance the power by use of the EDAC

design; and (3) both of the above choices. By applying tion, cost is reduced substantially. Which type of EC
pairs should be combined depends on p. However, asthe l method, we have shown that it is possible to strike

a balance between these choices and to arrive at an we have shown, as long as one has estimates of the l’s,
one can search for the optimum design without knowingoptimum design. It should be noted that ‘‘optimization’’

of study designs is always relative in practice; namely, the actual frequency. Finally, as discussed by Zhang and
Risch (1996), the parental phenotypic status also is rele-the result may be only relatively optimum, given all the

available data and prior information. For instance, in vant when dealing with EC sib pairs, which is an issue
not discussed here.the example discussed, we searched on a 19 1 19 grid

of percentiles to identify the optimum trait thresholds. The sampling scheme is another important factor
affecting the choice of optimum study designs andThis search requires 361 sets of estimates of the corre-

sponding l’s, which are hardly available in reality. What certainly deserves a separate investigation. We simply
point out here that selection of ESPs from extremelyis more practical is to search for the optimum design

over a much smaller number of thresholds (e.g., 5%, high-risk or from extremely low-risk populations
likely would result in better designs and that applica-10%, 20%, and 30%).

From our investigation, it appears that the use of an tion of the l method enables us to decide which selec-
tive-sampling scheme may be more suitable for aEDAC design and the selection of siblings from a

broader interval at the lower end and from a restricted study.
We should clarify two points here. First, although therange at the higher end provide a more cost-effective

design. Of course, a much larger p will reverse the situa- proposed optimization may involve all three types of
extreme sibpairs (LC, ED, and HC), it does not requiretion, as we have seen in the example. When ESPs are

selected from randomly sampled sib pairs, cost is notice- the genotyping of all the sib pairs available in the sample.
On the contrary, what the optimization achieves is eitherably larger, and EC pairs from both ends of the distribu-
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Table 10

Optimization of Study Designs under Various Additive, Dominant, and Recessive Models (H Å .30), with the Assumptions of Selective
Sampling, from the Upper Tail, and Equal Unit Cost for Genotyping and Phenotyping

STUDY DESIGN, FOR r Å 0.0 STUDY DESIGN, FOR r Å 0.40

Thresholds Thresholds
p (%, %) (n0, n1, n2) Cost (%, %) (n0, n1, n2) Cost

Additive Model

.05 (55, 5) (0, 38, 25) 183 (60, 5) (0, 23, 28) 148

.20 (25, 5) (0, 44, 34) 371 (50, 5) (0, 33, 46) 285

.40 (20, 5) (0, 62, 46) 627 (45, 5) (0, 44, 65) 434

.60 (25, 5) (0, 140, 0) 971 (40, 5) (0, 55, 97) 643

.80 (15, 5) (0, 122, 0) 1,350 (35, 5) (0, 93, 0) 1,078

Dominant Model

.05 (55, 5) (0, 37, 24) 178 (70, 5) (0, 28, 26) 144

.20 (35, 5) (0, 130, 0) 669 (50, 5) (0, 58, 67) 458

.40 (20, 5) (0, 152, 0) 1,203 (40, 5) (0, 112, 0) 983

.60 (10, 5) (0, 132, 0) 1,939 (25, 5) (0, 104, 0) 1,617

.80 (5, 5) (0, 144, 0) 3,885 (5, 25) (0, 61, 0) 2,724

Recessive Model

.05 (5, 5) (0, 0, 241) 4,090 (55, 5) (0, 2,185, 1,805) 13,403

.20 (5, 5) (0, 0, 21) 105 (60, 5) (0, 23, 19) 111

.40 (40, 5) (0, 57, 25) 287 (60, 5) (0, 38, 31) 212

.60 (25, 10) (0, 92, 77) 688 (50, 5) (0, 61, 67) 466

.80 (20, 5) (0, 143, 0) 1,167 (40, 5) (0, 105, 0) 950

NOTE.—See footnotes a, b, and c in table 8.

to minimize the genotyping of sib pairs as much as possi- with not-so-extreme trait values and certainly is out of
the scope of this article.ble, for a preset power, or to determine the numbers of

various types of sib pairs to be genotyped, so as to attain
as high a power as possible. Second, the use of neither
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